

# Advanced Rigging Calculations Worksheet MARKING GUIDE

| ADVANCED RIGGING FORMULAS / QUICK SHEET | 3  |
|-----------------------------------------|----|
| SECTION 1: GIN POLE CALCULATIONS        | 5  |
| SECTION 2: SPAN LINE CALCULATIONS       | 7  |
| SECTION 3: SWING STAGE CALCULATIONS     | 9  |
| SECTION 4: GIN POLE CALCULATIONS        | 11 |
| SECTION 5: SPAN LINE CALCULATIONS       | 13 |
| SECTION 6: SWING STAGE CALCULATIONS     | 15 |
| SECTION 7: GIN POLE CALCULATIONS        | 17 |
| SECTION 8: SPAN LINE CALCULATIONS       | 19 |
| SECTION 9: SWING STAGE CALCULATIONS     | 21 |
| SECTION 10: GIN POLE CALCULATIONS       | 23 |
| SECTION 11: SPAN LINE CALCULATIONS      | 25 |
| SECTION 12: SWING STAGE CALCULATIONS    | 27 |
|                                         |    |

| Version | Date       | Author | Notes                                                                       |
|---------|------------|--------|-----------------------------------------------------------------------------|
| 1.1     | 1/6/2022   | AD     | Initial version                                                             |
| 1.2     | 13/6/2022  | BJ     | Corrections, formatting and merging formula handout, answers, new questions |
| 1.3     | 17/11/2022 | BJ     | Aligning calculations to NAI v1.6                                           |



#### Minimum Distance = Pole Height $\times$ 1.5

2. Maximum Forward Lean of Gin Pole

Forward Lean = Pole Height  $\times$  0.1 OR Forward Lean = Pole Height  $\div$  10

3. Total Head Load on at Pole head.

Total Head Load = Total Load + Load in the Lead Rope

4. Tension in the Back Guy

Tension = Total Head Load × Forward Lean ÷ Shortest Radius

5. Diameter of FSWR used in the Back Guy

Diameter =  $\sqrt{\text{Tension in the Back Guy} \div 8}$ 

6. Compression Load on the Gin Pole

Compression Load = Total Head Load  $\times$  1.125

#### SPAN LINE CALCULATIONS

1. Tension in Span Rope



#### SWING STAGE CALCULATIONS

#### 1. Maximum Rope Tension

 $MRT = (WLL Hoist \times 1.25) + Total Rope Used Weight + Total Stabilising Weights$ 

#### 2. Number of Counterweights Required

# Counterweights Required = MRT × Outboard ÷ Inboard × 3 ÷ Weight of single Counterweight

3. Minimum Guaranteed Breaking Load of FSWR

 $MGB = WLL Hoist \times 10$ 

#### **Section 1: Gin Pole Calculations**

Scenario: You need to set up a gin pole at the recommended maximum lean to lift a load. The guys will be anchored at the minimum distances from the foot of the pole. The lead rope will run parallel to the pole as shown in the diagram.



The load specifics are as follows:

- Height of pole: 10 meters
- Weight of load: 7 tonnes
- Load on the lead rope: 1.8 tonnes
- Shortest radius from heel of pole to back guy: 8100 mm
- A. What is the recommended minimum distance between the pole heel and the back guy anchor? Show formula and all workings/calculations.

Minimum Distance = Pole Height  $\times$  1.5 = 10m  $\times$  1.5 = 15m

B. What is the recommended maximum forward lean on the pole? Show formula and all workings/calculations.

| Option 1:                               | Option 1:                       |
|-----------------------------------------|---------------------------------|
| Forward Lean = Pole Height $\times$ 0.1 | Forward Lean = Pole Height ÷ 10 |
| = 10m $\times$ 0.1                      | = 10m ÷ 10                      |
| = 1m                                    | = 1m                            |

Total Head Load = Total Load + Load in the Lead Rope = 7T + 1.8T= 8.8T

D. What is the tension in the back guy? Show formula and all workings/calculations.

```
Tension = Total Head Load × Forward Lean ÷ Shortest Radius
= 8.8T \times 1m \div 8.1m
= 1.0864T rounded up to 1.087T or 1087kg
```

E. What is the diameter of the FSWR in the back guy? Show formula and all workings/calculations.

Diameter =  $\sqrt{\text{Tension in the Back Guy} \div 8}$ =  $\sqrt{1087\text{kg} \div 8}$ =  $\sqrt{135.875}$ = 11.7 rounded up to 12mm

F. What is the compression load on the gin pole? Show formula and all workings/calculations.

Compression Load = Total Head Load  $\times$  1.125 = 8.8T  $\times$  1.125 = 9.9T

| Oregon<br>size in | SAFE TOTAL LOAD AT POLE HEAD IN TONNES<br>Length of pole in metres |        |        |        |       |        |        |        |        | Oregon<br>size in |        |           |  |
|-------------------|--------------------------------------------------------------------|--------|--------|--------|-------|--------|--------|--------|--------|-------------------|--------|-----------|--|
| mmm               | 4.5                                                                | 6      | 7.5    | 9      | 11    | 12     | 13.5   | 15     | 18     | 21                | 24     | mmm       |  |
|                   | tonnes                                                             | tonnes | tonnes | tonnes | onnes | tonnes | tonnes | tonnes | tonnes | tonnes            | tonnes |           |  |
| 100 × 100         | 1.05                                                               | 0.75   | -      | -      |       | -      | -      | -      | -      | -                 | -      | 100 x 100 |  |
| 150 x 150         | 3.0                                                                | 2.6    | 2.0    | 1.7    |       | -      | -      | -      | -      | -                 | -      | 150 x 150 |  |
| 200 x 200         | 6.5                                                                | 6.0    | 5.25   | 4.5    | 3.75  | 3.2    | -      | -      | -      | -                 | -      | 200 x 200 |  |
| 250               | 12.0                                                               | 11.0   | 10.0   | 9.0    | 8.0   | 6.5    | 6.0    | 5.0    | -      | -                 | -      | 250 x 250 |  |
| 300 x 300         | <b></b>                                                            | 17.0   | 10.0   | 15.0   | 14.0  | 12.0   | 11.0   | 9.0    | 7.0    | -                 | -      | 300 x 300 |  |
| 350 x 350         | 26.5                                                               | 26.0   | 24.0   | 23.0   | 22.0  | 20.0   | 18.0   | 17.0   | 13.0   | 11.0              | -      | 350 x 350 |  |
| 400 x 400         | -                                                                  | -      | -      | -      | -     | 30.0   | 28.0   | 26.0   | 21.0   | 17.0              | 14.0   | 400 x 400 |  |
| 450 x 450         | -                                                                  | -      | -      | -      | -     | -      | -      | -      | 30.0   | 26.0              | 27.0   | 450 x 450 |  |

#### G. Determine the minimum pole size from the table below? (Circle your answer on the table below)

300mm by 300mm Pole dimensions.

# Section 2: Span Line Calculations

Scenario: You need to install a span rope fixed between two beams.

As shown in the diagram, a chain block or other lifting device will be supported from an inverted snatch block on the span rope to lift a load.

The load specifics are:

- Span between beams: 11 meters
- Weight of load: 600 kgs
- Weight of lifting gear and load in the hauling part: 50 kg



A. What is the tension in the span rope when the sag is at its recommended minimum? Show formula and all workings/calculations.

| Option 1:                                                |                                                                                                                                                                                                            | Option 2:                                                                          |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Option 1:<br>Minimum Sa<br>Then:<br>Tension in Span Rope | $g = \text{Span} \times 0.05$<br>= 11m × 0.05<br>= 0.55m<br>= $\frac{\text{Total Head Load} \times \text{Span}}{4 \times \text{Sag}}$<br>= $\frac{650 \text{kg} \times 11\text{m}}{4 \times 0.55\text{m}}$ | Option 2:<br>Tension in Span Rope = Total Head Load × 5<br>= 650kg × 5<br>= 3250kg |
| :                                                        | $=\frac{7150 \text{kgm}}{2.2 \text{m}}$<br>= 3250 kg                                                                                                                                                       |                                                                                    |

B. Based on your answer to the previous question, determine from the following wire rope chart below:

Part A: Minimum diameter of the main span rope? 22mm (red circle)

Part B: Minimum breaking force of the main span rope? 213kN (green circle)

| Round Strand<br>6 x 19 IWRC   | Nominal Diameter<br>(mm) | Working Load<br>Limit (WLL)<br>tonnes | Min.Breaking<br>Force at<br>1570MPa<br>kN | Average<br>Mass<br>kg/100m |
|-------------------------------|--------------------------|---------------------------------------|-------------------------------------------|----------------------------|
| Cofot: Fostor                 | 6                        | 0.26                                  | 15.8                                      | 11.4                       |
| Safety Factor                 | 7                        | 0.36                                  | 21.5                                      | 15.6                       |
| 6:1                           | 8                        | 0.48                                  | 28.2                                      | 20.4                       |
|                               | 9                        | 0.61                                  | 35.6                                      | 25.8                       |
|                               | 10                       | 0.75                                  | 44.0                                      | 31.8                       |
| <u>(</u> )                    | 11                       | 0.90                                  | 53.2                                      | 38.5                       |
| 688888888                     | 12                       | 1.07                                  | 63.3                                      | 45.8                       |
|                               | 13                       | 1.26                                  | 74.3                                      | 53.8                       |
| 6666666666                    | 14                       | 1.47                                  | 86.2                                      | 62.4                       |
| 6 x 19W (6 & 6/6//1)          | 16                       | 1.92                                  | 113.0                                     | 81.5                       |
| Note: Working                 | 18                       | 2.43                                  | 143.0                                     | 103.0                      |
| Load Limit (WLL) is           | 20                       | 2.99                                  | 170.0                                     | 127.0                      |
| based on 1/6 <sup>th</sup> of | 22 🔶 🗕                   | 3.62                                  | → 213.0 )                                 | 154.0                      |
| Minimum Breaking              | 24                       | 4.30                                  | 200.0                                     | 183.0                      |
| Force                         | 26                       | 5.05                                  | 297.0                                     | 215.0                      |
|                               | 28                       | 5.86                                  | 345.0                                     | 250.0                      |
|                               | 32                       | 7.65                                  | 450.0                                     | 326.0                      |

C. Name the identified parts of the span line system using the terms from the list below:

TRANSVERSE ROPE SIDE GUY HOIST ROPE TRANSVERSE ROPE BOTTOM BLOCK ANCHORAGE ROPE



| 1. Anchorage Rope  |
|--------------------|
| 2. Side Guy        |
| 3. Transverse Rope |
| 4. Hoist Rope      |
| 5. Bottom Block    |
| 6. Transverse Rope |
|                    |

# Section 3: Swing Stage Calculations

Scenario: You need to erect a suspended scaffold from a counterweighted cantilevered suspension rig.

The scaffold is an individual cradle supported from two needles with one suspension rope and one scaffolding hoist per needle. The specifics are as follows:

- The needles have an outboard of 1.2 meters and an inboard of 5.8 meters
- The counterweights weigh 27 kgs each
- The rope is 50 meters long and weighs 34 kg per 100 meters
- The hoist's rated capacity: 850 kg
- Each stabilising weight: 12 kg
- A. What is the maximum rope tension? Show formula and all workings/calculations.

$$\begin{split} \text{MRT} &= (\text{WLL Hoist} \times 1.25) + \text{Total Rope Used Weight} + \text{Total Stabilising Weights} \\ &= (850 \text{kg} \times 1.25) + 34 \text{kg} + 24 \text{kg} \\ &= 1062.5 \text{kg} + 58 \text{kg} \\ &= 1120.5 \text{kg} \end{split}$$

B. Using a safety factor of 3, how many counterweights are needed at the inboard end of the needle? Show formula and all workings/calculations. Answer must be shown as a whole number.

# Counterweights Required = MRT × Outboard  $\div$  Inboard × 3  $\div$  Weight of single Counterweight = 1120.5kg × 1.2m  $\div$  5.8m × 3  $\div$  27kg

= 25.8 rounded up to 26 counterweights.

C. Using a safety factor of 10, what is the minimum guaranteed breaking load of the suspension rope? Show formula and all workings/calculations.

MGB = WLL Hoist × 10 = 850kg × 10 = 8500kg D. Name the identified parts of the span line system using the terms from the list below:

#### ELECTRIC SCAFFOLD HOIST POWER CABLE COUNTERWEIGHT NEEDLE SUSPENSION AND SECONDARY ROPES MODULAR SWING STAGE SCAFFFOLD (CRADLE) COUNTERWEIGHTS



- 1. Counterweights
- 2. Suspension and Secondary Ropes
- 3. Electric Scaffold Hoist
- 4. Modular Swing Stage Scaffold (Cradle)
- 5. Power cable
- 6. Counterweight Needle

#### **Section 4: Gin Pole Calculations**

Scenario: You need to set up a gin pole at the recommended maximum lean to lift a load. The guys will be anchored at the minimum distances from the foot of the pole. The lead rope will run parallel to the pole as shown in the diagram.



The load specifics are as follows:

- Height of pole: 7 meters
- Weight of load: 10 tonnes
- Load on the lead rope: 2.1 tonnes
- Shortest radius from heel of pole to back guy: 6000 mm
- A. What is the recommended minimum distance between the pole heel and the back guy anchor? Show formula and all workings/calculations.

Minimum Distance = Pole Height  $\times$  1.5 = 7m  $\times$  1.5 = 10.5m

# B. What is the recommended maximum forward lean on the pole? Show formula and all workings/calculations.

| Option 1:                               | Option 1:                       |
|-----------------------------------------|---------------------------------|
| Forward Lean = Pole Height $\times$ 0.1 | Forward Lean = Pole Height ÷ 10 |
| = 7m $\times$ 0.1                       | = 7m ÷ 10                       |
| = 0.7m                                  | = 0.7m                          |

Total Head Load = Total Load + Load in the Lead Rope = 10T + 2.1T= 12.1T

D. What is the tension in the back guy? Show formula and all workings/calculations.

```
Tension = Total Head Load × Forward Lean ÷ Shortest Radius
= 12.1T \times 0.7m \div 6m
= 1.4117T rounded up to 1.412T or 1412kg
```

E. What is the diameter of the FSWR in the back guy? Show formula and all workings/calculations.

Diameter =  $\sqrt{\text{Tension in the Back Guy} \div 8}$ =  $\sqrt{1412\text{kg} \div 8}$ =  $\sqrt{176.5}$ = 13.3 rounded up to 14mm

F. What is the compression load on the gin pole? Show formula and all workings/calculations.

Compression Load = Total Head Load  $\times$  1.125 = 12.1T  $\times$  1.125 = 13.6125T rounded up to 13.613T

|                   |                                                                    |        |        | ·      |        |        |        |        | ·      |        |                   |                  |  |  |
|-------------------|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------|------------------|--|--|
| Oregon<br>size in | SAFE TOTAL LOAD AT POLE HEAD IN TONNES<br>Length of pole in metres |        |        |        |        |        |        |        |        |        | Oregon<br>size in |                  |  |  |
| mmm               | 4.5                                                                | 6      | 7.5    | 9      | 11     | 12     | 13.5   | 15     | 18     | 21     | 24                | mmm              |  |  |
|                   | tonnes                                                             | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes            |                  |  |  |
| 100 x 100         | 1.05                                                               | 0.75   | -      | -      | -      | -      | -      | -      | -      | -      | -                 | $100 \times 100$ |  |  |
| 150 x 150         | 3.0                                                                | 2.6    | 2.0    | 1.7    | -      | -      | -      | -      | -      | -      | -                 | 150 x 150        |  |  |
| 200 x 200         | 6.5                                                                | 6.0    | 5.25   | 4.5    | 3.75   | 3.2    | -      | -      | -      | -      | -                 | 200 x 200        |  |  |
| 250 - 250         | 12.0                                                               | 11.0   | 10.0   | 9.0    | 8.0    | 6.5    | 6.0    | 5.0    | -      | -      | -                 | 250 x 250        |  |  |
| 300 x 300         | 18                                                                 | 17.0   | 16.0   | 15.0   | 14.0   | 12.0   | 11.0   | 9.0    | 7.0    | -      | -                 | 300 x 300        |  |  |
| 330 x 330         | 26.5                                                               | 26.0   | 24.0   | 23.0   | 22.0   | 20.0   | 18.0   | 17.0   | 13.0   | 11.0   | -                 | 350 x 350        |  |  |
| 400 x 400         | -                                                                  | -      | -      | -      | -      | 30.0   | 28.0   | 26.0   | 21.0   | 17.0   | 14.0              | 400 x 400        |  |  |
| 450 x 450         | -                                                                  | -      | -      | -      | -      | -      | -      | -      | 30.0   | 26.0   | 27.0              | 450 x 450        |  |  |

G. Determine the minimum pole size from the table below? (Circle your answer on the table below)

300mm by 300mm Pole dimensions.

# Section 5: Span Line Calculations

Scenario: You need to install a span rope fixed between two beams.

As shown in the diagram, a chain block or other lifting device will be supported from an inverted snatch block on the span rope to lift a load.

The load specifics are:

- Span between beams: 18 meters
- Weight of load: 900 kgs
- Weight of lifting gear and load in the hauling part: 75 kg



A. What is the tension in the span rope when the sag is at its recommended minimum? Show formula and all workings/calculations.

| Option 1:                                                |                                                                                                                                                                                                                                                      | Option 2:                                                                          |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Option 1:<br>Minimum Sa<br>Then:<br>Tension in Span Rope | $g = \text{Span} \times 0.05$<br>= 18m × 0.05<br>= 0.9m<br>$= \frac{\text{Total Head Load} \times \text{Span}}{4 \times \text{Sag}}$<br>$= \frac{975 \text{kg} \times 18\text{m}}{4 \times 0.9\text{m}}$<br>$= \frac{17550 \text{kgm}}{3.6\text{m}}$ | Option 2:<br>Tension in Span Rope = Total Head Load × 5<br>= 975kg × 5<br>= 4875kg |
|                                                          | = 4875kg                                                                                                                                                                                                                                             |                                                                                    |

B. Based on your answer to the previous question, determine from the following wire rope chart below:

Part A: Minimum diameter of the main span rope? 26mm (red circle)

Part B: Minimum breaking force of the main span rope? 287.0kN (green circle)

| Round Strand<br>6 x 19 IWRC   | Nominal Diameter<br>(mm) | Working Load<br>Limit (WLL)<br>tonnes | Min.Breaking<br>Force at<br>1570MPa<br>kN | Average<br>Mass<br>kg/100m |
|-------------------------------|--------------------------|---------------------------------------|-------------------------------------------|----------------------------|
|                               | 6                        | 0.26                                  | 15.8                                      | 11.4                       |
| Safety Factor                 | 7                        | 0.36                                  | 21.5                                      | 15.6                       |
| 6:1                           | 8                        | 0.48                                  | 28.2                                      | 20.4                       |
|                               | 9                        | 0.61                                  | 35.6                                      | 25.8                       |
|                               | 10                       | 0.75                                  | 44.0                                      | 31.8                       |
| ~                             | 11                       | 0.90                                  | 53.2                                      | 38.5                       |
|                               | 12                       | 1.07                                  | 63.3                                      | 45.8                       |
|                               | 13                       | 1.26                                  | 74.3                                      | 53.8                       |
|                               | 14                       | 1.47                                  | 86.2                                      | 62.4                       |
| 6 x 19W (6 & 6/6//1)          | 16                       | 1.92                                  | 113.0                                     | 81.5                       |
| Note: Working                 | 18                       | 2.43                                  | 143.0                                     | 103.0                      |
| Load Limit (WLL) is           | 20                       | 2.99                                  | 176.0                                     | 127.0                      |
| based on 1/6 <sup>th</sup> of | 22                       | 3.62                                  | 213.0                                     | 154.0                      |
| Minimum Breaking              | 21                       | 4.30                                  | 253.0                                     | 183.0                      |
| Force                         | 26 🔶 🔶                   | 5.05                                  | → 297.0                                   | 215.0                      |
|                               | 20                       | 5.86                                  | 345.0                                     | 250.0                      |
|                               | 32                       | 7.65                                  | 450.0                                     | 326.0                      |

C. Name the identified parts of the span line system using the terms from the list below:

TRANSVERSE ROPE SIDE GUY HOIST ROPE TRANSVERSE ROPE BOTTOM BLOCK ANCHORAGE ROPE



| 1. Anchorage Rope  |
|--------------------|
| 2. Side Guy        |
| 3. Transverse Rope |
| 4. Hoist Rope      |
| 5. Bottom Block    |
| 6. Transverse Rope |
|                    |

# Section 6: Swing Stage Calculations

Scenario: You need to erect a suspended scaffold from a counterweighted cantilevered suspension rig.

The scaffold is an individual cradle supported from two needles with one suspension rope and one scaffolding hoist per needle. The specifics are as follows:

- The needles have an outboard of 0.8 meters and an inboard of 5.6 meters
- The counterweights weigh 25 kgs each
- The rope is 50 meters long and weighs 34 kg per 100 meters
- The hoist's rated capacity: 750 kg
- Each stabilising weight: 15 kg
- A. What is the maximum rope tension? Show formula and all workings/calculations.

$$\begin{split} \text{MRT} &= (\text{WLL Hoist} \times 1.25) + \text{Total Rope Used Weight} + \text{Total Stabilising Weights} \\ &= (750 \text{kg} \times 1.25) + 34 \text{kg} + 30 \text{kg} \\ &= 937.5 \text{kg} + 64 \text{kg} \\ &= 1001.5 \text{kg} \end{split}$$

B. Using a safety factor of 3, how many counterweights are needed at the inboard end of the needle? Show formula and all workings/calculations. Answer must be shown as a whole number.

# Counterweights Required = MRT × Outboard  $\div$  Inboard × 3  $\div$  Weight of single Counterweight = 1001.5kg × 0.8m  $\div$  5.6m × 3  $\div$  25kg

= 17.2 rounded up to 18 counterweights.

C. Using a safety factor of 10, what is the minimum guaranteed breaking load of the suspension rope? Show formula and all workings/calculations.

MGB = WLL Hoist × 10 = 750kg × 10 = 7500kg D. Name the identified parts of the span line system using the terms from the list below:

#### ELECTRIC SCAFFOLD HOIST POWER CABLE COUNTERWEIGHT NEEDLE SUSPENSION AND SECONDARY ROPES MODULAR SWING STAGE SCAFFFOLD (CRADLE) COUNTERWEIGHTS



- 1. Counterweights
- 2. Suspension and Secondary Ropes
- 3. Electric Scaffold Hoist
- 4. Modular Swing Stage Scaffold (Cradle)
- 5. Power cable
- 6. Counterweight Needle

#### **Section 7: Gin Pole Calculations**

Scenario: You need to set up a gin pole at the recommended maximum lean to lift a load. The guys will be anchored at the minimum distances from the foot of the pole. The lead rope will run parallel to the pole as shown in the diagram.



The load specifics are as follows:

- Height of pole: 13.5 meters
- Weight of load: 5 tonnes
- Load on the lead rope: 1.1 tonnes
- Shortest radius from heel of pole to back guy: 10400 mm
- A. What is the recommended minimum distance between the pole heel and the back guy anchor? Show formula and all workings/calculations.

Minimum Distance = Pole Height  $\times$  1.5 = 13.5m  $\times$  1.5 = 20.25m

# B. What is the recommended maximum forward lean on the pole? Show formula and all workings/calculations.

| Option 1:                               | Option 1:                       |
|-----------------------------------------|---------------------------------|
| Forward Lean = Pole Height $\times$ 0.1 | Forward Lean = Pole Height ÷ 10 |
| = 13.5m $\times$ 0.1                    | = 13.5m ÷ 10                    |
| = 1.35m                                 | = 1.35m                         |

Total Head Load = Total Load + Load in the Lead Rope = 5T + 1.1T= 6.1T

D. What is the tension in the back guy? Show formula and all workings/calculations.

```
Tension = Total Head Load × Forward Lean ÷ Shortest Radius
= 6.1T \times 1.35m \div 10.4m
= 0.7918T rounded up to 0.792T or 792kg
```

E. What is the diameter of the FSWR in the back guy? Show formula and all workings/calculations.

Diameter =  $\sqrt{\text{Tension in the Back Guy} \div 8}$ =  $\sqrt{792 \text{kg} \div 8}$ =  $\sqrt{99}$ = 9.9 rounded up to 10mm

F. What is the compression load on the gin pole? Show formula and all workings/calculations.

Compression Load = Total Head Load  $\times$  1.125 = 6.1T  $\times$  1.125 = 6.8625T rounded to 6.863T

| Oregon<br>size in | SAFE TOTAL LOAD AT POLE HEAD IN TONNES<br>Length of pole in metres |        |        |        |        |        |        |        |        | Oregon<br>size in |        |           |
|-------------------|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------|--------|-----------|
| mmm               | 4.5                                                                | 6      | 7.5    | 9      | 11     | 12     | 13.5   | 15     | 18     | 21                | 24     | mmm       |
|                   | tonnes                                                             | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes            | tonnes |           |
| 100 × 100         | 1.05                                                               | 0.75   | -      | -      | -      | -      | -      | -      | -      | -                 | -      | 100 x 100 |
| 150 x 150         | 3.0                                                                | 2.6    | 2.0    | 1.7    | -      | -      | -      | -      | -      | -                 | -      | 150 x 150 |
| 200 x 200         | 6.5                                                                | 6.0    | 5.25   | 4.5    | 3.75   | 3.2    | -      | -      | -      | -                 | -      | 200 x 200 |
| 250 250           | 12.0                                                               | 11.0   | 10.0   | 9.0    | 8.0    | 6.5    | 6.0    | 5.0    | -      | -                 | -      | 250 x 250 |
| 300 x 300         | 1.5                                                                | 17.0   | 16.0   | 15.0   | 14.0   | 12.0   | 11.0   | 9.0    | 7.0    | -                 | -      | 300 x 300 |
| 350 x 350         | 26.5                                                               | 26.0   | 24.0   | 23.0   | 22.0   | 20.0   | 18.0   | 17.0   | 13.0   | 11.0              | -      | 350 x 350 |
| 400 x 400         | -                                                                  | -      | -      | -      | -      | 30.0   | 28.0   | 26.0   | 21.0   | 17.0              | 14.0   | 400 x 400 |
| 450 x 450         | -                                                                  | -      | -      | -      | -      | -      | -      | -      | 30.0   | 26.0              | 27.0   | 450 x 450 |

#### G. Determine the minimum pole size from the table below? (Circle your answer on the table below)

300mm by 300mm Pole dimensions.

# **Section 8: Span Line Calculations**

Scenario: You need to install a span rope fixed between two beams.

As shown in the diagram, a chain block or other lifting device will be supported from an inverted snatch block on the span rope to lift a load.

The load specifics are:

- Span between beams: 8 meters
- Weight of load: 475 kgs
- Weight of lifting gear and load in the hauling part: 50 kg



A. What is the tension in the span rope when the sag is at its recommended minimum? Show formula and all workings/calculations.

| Option 1:                                                                                                                                                                                                                                                                                 | Option 2:                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Option 1:<br>Minimum Sag = Span × 0.05<br>= 8m × 0.05<br>= 0.4m<br>Then:<br>Tension in Span Rope = $\frac{\text{Total Head Load × Span}}{4 \times \text{Sag}}$<br>= $\frac{525 \text{kg} \times 8\text{m}}{4 \times 0.4\text{m}}$<br>= $\frac{4200 \text{kgm}}{1.6\text{m}}$<br>= 2625 kg | Option 2:<br>Tension in Span Rope = Total Head Load × 5<br>= 525kg × 5<br>= 2625kg |

B. Based on your answer to the previous question, determine from the following wire rope chart below:

Part A: Minimum diameter of the main span rope? 20mm (red circle)

Part B: Minimum breaking force of the main span rope? 176kN (green circle)

| Round Strand<br>6 x 19 IWRC   | Nominal Diameter<br>(mm) | Working Load<br>Limit (WLL)<br>tonnes | Min.Breaking<br>Force at<br>1570MPa<br>kN | Average<br>Mass<br>kg/100m |
|-------------------------------|--------------------------|---------------------------------------|-------------------------------------------|----------------------------|
| Cofot: Fostor                 | 6                        | 0.26                                  | 15.8                                      | 11.4                       |
| Safety Factor                 | 7                        | 0.36                                  | 21.5                                      | 15.6                       |
| 6:1                           | 8                        | 0.48                                  | 28.2                                      | 20.4                       |
|                               | 9                        | 0.61                                  | 35.6                                      | 25.8                       |
|                               | 10                       | 0.75                                  | 44.0                                      | 31.8                       |
| <i>~</i>                      | 11                       | 0.90                                  | 53.2                                      | 38.5                       |
| 688888888                     | 12                       | 1.07                                  | 63.3                                      | 45.8                       |
|                               | 13                       | 1.26                                  | 74.3                                      | 53.8                       |
| 33555555                      | 14                       | 1.47                                  | 86.2                                      | 62.4                       |
| 6 x 19W (6 & 6/6//1)          | 16                       | 1.92                                  | 113.0                                     | 81.5                       |
| Note: Working                 | 10                       | 2.43                                  | 140.0                                     | 103.0                      |
| Load Limit (WLL) is           | 20 🔶                     | 2.99                                  | 176.0                                     | 127.0                      |
| based on 1/6 <sup>th</sup> of | 22                       | 3.62                                  | 213.0                                     | 154.0                      |
| Minimum Breaking              | 24                       | 4.30                                  | 253.0                                     | 183.0                      |
| Force                         | 26                       | 5.05                                  | 297.0                                     | 215.0                      |
|                               | 28                       | 5.86                                  | 345.0                                     | 250.0                      |
|                               | 32                       | 7.65                                  | 450.0                                     | 326.0                      |

C. Name the identified parts of the span line system:



- 1. Anchorage Rope
- 2. Side Guy
- 3. Transverse Rope
- 4. Hoist Rope
- 5. Bottom Block
- 6. Transverse Rope

# Section 9: Swing Stage Calculations

Scenario: You need to erect a suspended scaffold from a counterweighted cantilevered suspension rig.

The scaffold is an individual cradle supported from two needles with one suspension rope and one scaffolding hoist per needle. The specifics are as follows:

- The needles have an outboard of 1.4 meters and an inboard of 6.4 meters
- The counterweights weigh 22 kgs each
- The rope is 50 meters long and weighs 34 kg per 100 meters
- The hoist's rated capacity: 500 kg
- Each stabilising weight: 18 kg
- A. What is the maximum rope tension? Show formula and all workings/calculations.

 $MRT = (WLL \text{ Hoist} \times 1.25) + \text{Total Rope Used Weight} + \text{Total Stabilising Weights}$  $= (500 \text{kg} \times 1.25) + 34 \text{kg} + 36 \text{kg}$ = 625 kg + 70 kg= 695 kg

B. Using a safety factor of 3, how many counterweights are needed at the inboard end of the needle? Show formula and all workings/calculations. Answer must be shown as a whole number.

# Counterweights Required = MRT × Outboard  $\div$  Inboard × 3  $\div$  Weight of single Counterweight = 695kg × 1.4m  $\div$  6.4m × 3  $\div$  22kg

= 20.7 rounded up to 21 counterweights.

C. Using a safety factor of 10, what is the minimum guaranteed breaking load of the suspension rope? Show formula and all workings/calculations.

 $MGB = WLL Hoist \times 10$ = 500kg × 10 = 5000kg D. Name the identified parts of the span line system:



- 1. Counterweights
- 2. Suspension and Secondary Ropes
- 3. Electric Scaffold Hoist
- 4. Modular Swing Stage Scaffold (Cradle)
- 5. Power cable
- 6. Counterweight Needle

#### **Section 10: Gin Pole Calculations**

Scenario: You need to set up a gin pole at the recommended maximum lean to lift a load. The guys will be anchored at the minimum distances from the foot of the pole. The lead rope will run parallel to the pole as shown in the diagram.



The load specifics are as follows:

- Height of pole: 24 meters
- Weight of load: 25.5 tonnes
- Load on the lead rope: 3.5 tonnes
- Shortest radius from heel of pole to back guy: 19 meters
- A. What is the recommended minimum distance between the pole heel and the back guy anchor? Show formula and all workings/calculations.

Minimum Distance = Pole Height  $\times$  1.5 = 24m  $\times$  1.5 = 36m

B. What is the recommended maximum forward lean on the pole? Show formula and all workings/calculations.



Total Head Load = Total Load + Load in the Lead Rope = 25.5T + 3.5T= 29T

D. What is the tension in the back guy? Show formula and all workings/calculations.

```
Tension = Total Head Load × Forward Lean ÷ Shortest Radius
= 29T × 2.4m ÷ 19m
= 3.663T rounded up to 3.664T or 3664kg
```

E. What is the diameter of the FSWR in the back guy? Show formula and all workings/calculations.

Diameter =  $\sqrt{\text{Tension in the Back Guy} \div 8}$ =  $\sqrt{3664 \text{kg} \div 8}$ =  $\sqrt{458}$ = 21.5 rounded up to 22mm

F. What is the compression load on the gin pole? Show formula and all workings/calculations.

Compression Load = Total Head Load  $\times$  1.125 = 29T  $\times$  1.125 = 32.625T

|                   |                                                                                     |        |        | •      |        |        |        | •      | •      |        |                   |           |
|-------------------|-------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------|-----------|
| Oregon<br>size in | SAFE TOTAL LOAD AT POLE HEAD IN TONNES           n         Length of pole in metres |        |        |        |        |        |        |        |        |        | Oregon<br>size in |           |
| mmm               | 4.5                                                                                 | 6      | 7.5    | 9      | 11     | 12     | 13.5   | 15     | 18     | 21     | 24                | mmm       |
|                   | tonnes                                                                              | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes | tonnes            |           |
| 100 x 100         | 1.05                                                                                | 0.75   | -      | -      | -      | -      | -      | -      | -      | -      | -                 | 100 x 100 |
| 150 x 150         | 3.0                                                                                 | 2.6    | 2.0    | 1.7    | -      | -      | -      | -      | -      | -      | -                 | 150 x 150 |
| 200 x 200         | 6.5                                                                                 | 6.0    | 5.25   | 4.5    | 3.75   | 3.2    | -      | -      | -      | -      | -                 | 200 x 200 |
| 250 x 250         | 12.0                                                                                | 11.0   | 10.0   | 9.0    | 8.0    | 6.5    | 6.0    | 5.0    | -      | -      | -                 | 250 x 250 |
| 300 x 300         | 18.5                                                                                | 17.0   | 16.0   | 15.0   | 14.0   | 12.0   | 11.0   | 9.0    | 7.0    | -      | -                 | 300 x 300 |
| 350 x 350         | 26.5                                                                                | 26.0   | 24.0   | 23.0   | 22.0   | 20.0   | 18.0   | 17.0   | 13.0   | 11.0   | -                 | 350 x 350 |
| 400 x 400         | -                                                                                   | -      | -      | -      | -      | 30.0   | 28.0   | 26.0   | 21.0   | 17.0   | 14.0              | 400 x 400 |
| 450 x 450         | -                                                                                   | -      | -      | -      | -      | -      | -      | -      | 30.0   | 26.0   | 27.0              | 450 x 450 |

#### G. Determine the minimum pole size from the table below? (Circle your answer on the table below)

Off chart – refer to engineer or identify legitimate ways to reduce load on gin pole to bring it back on chart.

# Section 11: Span Line Calculations

Scenario: You need to install a span rope fixed between two beams.

As shown in the diagram, a chain block or other lifting device will be supported from an inverted snatch block on the span rope to lift a load.

The load specifics are:

- Span between beams: 32 meters
- Weight of load: 200 kgs
- Weight of lifting gear and load in the hauling part: 25 kg



A. What is the tension in the span rope when the sag is at its recommended minimum? Show formula and all workings/calculations.

| Option 1:                                                                                                                                                                                                                                                                        | Option 2:                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Minimum Sag = Span × 0.05<br>= 32m × 0.05<br>= 1.6m<br>Then:<br>Tension in Span Rope = $\frac{225 \text{kg} \times 32\text{m}}{4 \times 1.6\text{m}}$<br>= $\frac{225 \text{kg} \times 8\text{m}}{4 \times 1.6\text{m}}$<br>= $\frac{7200 \text{kgm}}{6.4\text{m}}$<br>= 1125 kg | Tension in Span Rope = Total Head Load × 5<br>= 225kg × 5<br>= 1125kg |

B. Based on your answer to the previous question, determine from the following wire rope chart below:

Part A: Minimum diameter of the main span rope? 13mm (red circle)

Part B: Minimum breaking force of the main span rope? 74.3kN (green circle)

| Round Strand<br>6 x 19 IWRC            | Nominal Diameter<br>(mm) | Working Load<br>Limit (WLL)<br>tonnes | Min.Breaking<br>Force at<br>1570MPa<br>kN | Average<br>Mass<br>kg/100m |
|----------------------------------------|--------------------------|---------------------------------------|-------------------------------------------|----------------------------|
| Safety Factor                          | 6<br>7                   | 0.26<br>0.36                          | 15.8<br>21.5                              | 11.4<br>15.6               |
| 6:1                                    | 8                        | 0.48                                  | 28.2                                      | 20.4                       |
|                                        | 9                        | 0.61                                  | 35.6                                      | 25.8                       |
|                                        | 10                       | 0.75                                  | 44.0                                      | 31.8                       |
| <u></u>                                | 11                       | 0.90                                  | 53.2                                      | 38.5                       |
| 688888888                              | 12                       | 1.07                                  | 62.2                                      | 45.8                       |
|                                        | 13 🔶                     | 1.26                                  | → 74.3                                    | 53.8                       |
| 88888888888888888888888888888888888888 | 14                       | 1.47                                  | 00.2                                      | 62.4                       |
| 6 x 19W (6 & 6/6//1)                   | 16                       | 1.92                                  | 113.0                                     | 81.5                       |
| Note: Working                          | 18                       | 2.43                                  | 143.0                                     | 103.0                      |
| Load Limit (WLL) is                    | 20                       | 2.99                                  | 176.0                                     | 127.0                      |
| based on 1/6 <sup>th</sup> of          | 22                       | 3.62                                  | 213.0                                     | 154.0                      |
| Minimum Breaking                       | 24                       | 4.30                                  | 253.0                                     | 183.0                      |
| Force                                  | 26                       | 5.05                                  | 297.0                                     | 215.0                      |
|                                        | 28                       | 5.86                                  | 345.0                                     | 250.0                      |
|                                        | 32                       | 7.65                                  | 450.0                                     | 326.0                      |

C. Name the identified parts of the span line system:



- 1. Anchorage Rope
- 2. Side Guy
- 3. Transverse Rope
- 4. Hoist Rope
- 5. Bottom Block
- 6. Transverse Rope

# Section 12: Swing Stage Calculations

Scenario: You need to erect a suspended scaffold from a counterweighted cantilevered suspension rig.

The scaffold is an individual cradle supported from two needles with one suspension rope and one scaffolding hoist per needle. The specifics are as follows:

- The needles have an outboard of 0.9 meters and an inboard of 4.9 meters
- The counterweights weigh 14 kgs each
- The rope is 100 meters long and weighs 34 kg per 100 meters
- The hoist's rated capacity: 700 kg
- Each secondary line is tensioned by ratchet to the equivalent of 28kg
- A. What is the maximum rope tension? Show formula and all workings/calculations.

 $MRT = (WLL Hoist \times 1.25) + Total Rope Used Weight + Total Stabilising Weights$  $= (700 kg \times 1.25) + 68 kg + 56 kg$ = 875 kg + 124 kg= 999 kg

B. Using a safety factor of 3, how many counterweights are needed at the inboard end of the needle? Show formula and all workings/calculations. Answer must be shown as a whole number.

# Counterweights Required = MRT × Outboard  $\div$  Inboard × 3  $\div$  Weight of single Counterweight = 999kg × 0.9m  $\div$  4.9m × 3  $\div$  14kg

= 39.3 rounded up to 40 counterweights.

C. Using a safety factor of 10, what is the minimum guaranteed breaking load of the suspension rope? Show formula and all workings/calculations.

MGB = WLL Hoist × 10 = 700kg × 10 = 7000kg D. Name the identified parts of the span line system:



- 1. Counterweights
- 2. Suspension and Secondary Ropes
- 3. Electric Scaffold Hoist
- 4. Modular Swing Stage Scaffold (Cradle)
- 5. Power cable
- 6. Counterweight Needle